55 research outputs found

    The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations

    Full text link
    We analyze the occurrence frequency distributions of peak fluxes PP, total fluxes EE, and durations TT of solar flares over the last three solar cycles (during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI. From the synthesized data we find powerlaw slopes with mean values of αP=1.72±0.08\alpha_P=1.72\pm0.08 for the peak flux, αE=1.60±0.14\alpha_E=1.60\pm0.14 for the total flux, and αT=1.98±0.35\alpha_T=1.98\pm0.35 for flare durations. We find a systematic anti-correlation of the powerlaw slope of peak fluxes as a function of the solar cycle, varying with an approximate sinusoidal variation αP(t)=α0+Δαcos[2π(tt0)/Tcycle]\alpha_P(t)=\alpha_0+\Delta \alpha \cos{[2\pi (t-t_0)/T_{cycle}]}, with a mean of α0=1.73\alpha_0=1.73, a variation of Δα=0.14\Delta \alpha =0.14, a solar cycle period Tcycle=12.6T_{cycle}=12.6 yrs, and a cycle minimum time t0=1984.1t_0=1984.1. The powerlaw slope is flattest during the maximum of a solar cycle, which indicates a higher magnetic complexity of the solar corona that leads to an overproportional rate of powerful flares.Comment: subm. to Solar Physic

    Recent Developments of NEMO: Detection of Solar Eruptions Characteristics

    Full text link
    The recent developments in space instrumentation for solar observations and telemetry have caused the necessity of advanced pattern recognition tools for the different classes of solar events. The Extreme ultraviolet Imaging Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new class of eruptive events which are often identified as signatures of Coronal Mass Ejection (CME) initiations on solar disk. It is evident that a crucial task is the development of an automatic detection tool of CMEs precursors. The Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an operational tool that detects automatically solar eruptions using EIT image sequences. NEMO applies techniques based on the general statistical properties of the underlying physical mechanisms of eruptive events on the solar disc. In this work, the most recent updates of NEMO code - that have resulted to the increase of the recognition efficiency of solar eruptions linked to CMEs - are presented. These updates provide calculations of the surface of the dimming region, implement novel clustering technique for the dimmings and set new criteria to flag the eruptive dimmings based on their complex characteristics. The efficiency of NEMO has been increased significantly resulting to the extraction of dimmings observed near the solar limb and to the detection of small-scale events as well. As a consequence, the detection efficiency of CMEs precursors and the forecasts of CMEs have been drastically improved. Furthermore, the catalogues of solar eruptive events that can be constructed by NEMO may include larger number of physical parameters associated to the dimming regions.Comment: 12 Pages, 5 figures, submitted to Solar Physic

    From Predicting Solar Activity to Forecasting Space Weather: Practical Examples of Research-to-Operations and Operations-to-Research

    Full text link
    The successful transition of research to operations (R2O) and operations to research (O2R) requires, above all, interaction between the two communities. We explore the role that close interaction and ongoing communication played in the successful fielding of three separate developments: an observation platform, a numerical model, and a visualization and specification tool. Additionally, we will examine how these three pieces came together to revolutionize interplanetary coronal mass ejection (ICME) arrival forecasts. A discussion of the importance of education and training in ensuring a positive outcome from R2O activity follows. We describe efforts by the meteorological community to make research results more accessible to forecasters and the applicability of these efforts to the transfer of space-weather research.We end with a forecaster "wish list" for R2O transitions. Ongoing, two-way communication between the research and operations communities is the thread connecting it all.Comment: 18 pages, 3 figures, Solar Physics in pres

    Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Radio Flux Density Variations with Frequency

    Full text link
    We have performed a statistical study of 152152 Type III radio bursts observed by Solar TErrestrial RElations Observatory (STEREO)/Waves between May 2007 and February 2013. We have investigated the flux density between 125125kHz and 1616MHz. Both high- and low-frequency cutoffs have been observed in 6060\,% of events suggesting an important role of propagation. As already reported by previous authors, we observed that the maximum flux density occurs at 11MHz on both spacecraft. We have developed a simplified analytical model of the flux density as a function of radial distance and compared it to the STEREO/Waves data.Comment: published in Solar Physic

    The dependence of the EIT wave velocity on the magnetic field strength

    Full text link
    "EIT waves" are a wavelike phenomenon propagating in the corona, which were initially observed in the extreme ultraviolet (EUV) wavelength by the EUV Imaging Telescope (EIT). Their nature is still elusive, with the debate between fast-mode wave model and non-wave model. In order to distinguish between these models, we investigate the relation between the EIT wave velocity and the local magnetic field in the corona. It is found that the two parameters show significant negative correlation in most of the EIT wave fronts, {\it i.e.}, EIT wave propagates more slowly in the regions of stronger magnetic field. Such a result poses a big challenge to the fast-mode wave model, which would predict a strong positive correlation between the two parameters. However, it is demonstrated that such a result can be explained by the fieldline stretching model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings, which are generated by successive stretching of closed magnetic field lines pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy

    Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient

    Full text link
    On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave including correspondence to the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final publication is available at http://www.springerlink.co

    What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models

    Full text link
    One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO were intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called `EIT' waves is still strongly debated. They are considered to be either wave (primarily fast-mode MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies with the limitations of the EIT observations which have been used almost exclusively for their study. Their limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on December 07, 2007 when the STEREO spacecraft separation was 45\approx 45^\circ. Both a small flare and a CME were associated with the wave cadence, and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs

    Full text link
    We show examples of excitation of coronal waves by flare-related abrupt eruptions of magnetic rope structures. The waves presumably rapidly steepened into shocks and freely propagated afterwards like decelerating blast waves that showed up as Moreton waves and EUV waves. We propose a simple quantitative description for such shock waves to reconcile their observed propagation with drift rates of metric type II bursts and kinematics of leading edges of coronal mass ejections (CMEs). Taking account of different plasma density falloffs for propagation of a wave up and along the solar surface, we demonstrate a close correspondence between drift rates of type II bursts and speeds of EUV waves, Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final publication is available at http://www.springerlink.co

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio
    corecore